
keepitfresh Documentation
Release 1.0.2

Daniel Nunes

Aug 19, 2019

CONTENTS

1 Installation 3

2 Usage 5

3 Reference 7

Index 9

i

ii

keepitfresh Documentation, Release 1.0.2

A simpler way to freshen up your frozen applications

keepitfresh serves as an auto-updater for frozen applications1. Inspired by uscan, it’s incredibly modular giving you
full control over every step.

See below for a quick tutorial!

1 While it was made with frozen application is mind it can be applied to anything executable really.

CONTENTS 1

https://pypi.org/project/keepitfresh/
https://pypi.org/project/keepitfresh/
https://travis-ci.org/GandaG/keepitfresh
https://ci.appveyor.com/project/GandaG/keepitfresh/branch/master
https://coveralls.io/github/GandaG/keepitfresh?branch=master
https://manpages.debian.org/jessie/devscripts/uscan.1.en.html

keepitfresh Documentation, Release 1.0.2

2 CONTENTS

CHAPTER

ONE

INSTALLATION

To install keepitfresh, use pip:

pip install keepitfresh

Simple as that! You now have keepitfresh available in your environment.

3

keepitfresh Documentation, Release 1.0.2

4 Chapter 1. Installation

CHAPTER

TWO

USAGE

You can find a more thourough description of each argument below, this section illustrates an example usage with
some pseudo-code:

>>> base_url = 'http://www.example.com/'
>>> regex = r'(\d+\.\d+\.\d+)\.(?:tar\.gz|zip|rar|7z)'
>>> current_version = '0.0.1'
>>> overwrite_item = 'path/to/application'
>>> entry_point = 'example.exe'
>>> # check if it can be updated
>>> is_fresh(base_url, regex, current_version):
False

>>> # current version is not fresh, let's update
>>> payload = {'base_url': base_url 'regex': regex, 'current_version': current_
→˓version, 'overwrite_item': overwrite_item, 'entry_point': entry_point}
>>> freshen_up(**payload) # process will restart automatically

Usually you should only call is_fresh() if you’re not updating. Otherwise do this:

>>> try:
... freshen_up(**payload)
... except RuntimeError:
... # no new version
...

For some further examples on base url and regex combos take a look at this page, originally meant for uscan but also
usable for this package.

5

https://wiki.debian.org/debian/watch#Common_upstream_source_sites

keepitfresh Documentation, Release 1.0.2

6 Chapter 2. Usage

CHAPTER

THREE

REFERENCE

keepitfresh.freshen_up(**kwargs)
Finds, downloads, unpacks, overwrites and restarts your application. Essentially an all-in-one for your conve-
nience.

This function requires 5 arguments to be passed with an additional 2 optional.

The required arguments are as follows:

• base_url - The url that contains the links to download the package in the form <a href"..."/>.

• regex - The regular expression that matches the file name. Must contain at least one capturing group
representing the version string and this must be the first group.

• current_version - The current version of the application as a string.

• overwrite_item - The file/folder where your application is and that is going to be overwritten.

• entry_point - The relative path from overwrite_item to the executable that restarts the application.

The optional arguments are as follows:

• versioncmp - A function to override the default version comparison method, that takes 2 positional argu-
ments, two version strings, and returns True whenever the second version string is newer than the first
version string.

• unpack - A function to override the defauly unpacking method that takes two arguments, the archive path
and the output folder.

If versioncmp is not provided, the standard comparison method from the packaging package is used. If unpack
is not provided, unpacking is handled by patool.

keepitfresh.is_fresh(base_url, regex, current_version, versioncmp=None)
Checks whether your application is fresh (if there is a more recent version). Returns False if there is a newer
version, True otherwise.

For what each argument means, please refer to freshen_up().

keepitfresh.get_file_urls(base_url, regex)
Inspired by uscan, the debian packaging utility.

Looks through all references to files in the given base url and extracts them into a dictionary
of (file_url, file_version) value-pairs.

The regex argument is a regular expression that matches the file name. It MUST have the file’s version in a
capturing group and this MUST be the first group (\1 backreference).

As an example, consider a project named b by a which deploys to Github Releases with filenames such as
b-1.0.0.zip. The function call would look like:

7

https://packaging.pypa.io/en/latest/version/
http://wummel.github.io/patool/

keepitfresh Documentation, Release 1.0.2

>>> base_url = "https://github.com/a/b/releases"
>>> regex = r"b-(\d+\.\d+\.\d+)\.zip"
>>> result = get_file_urls(base_url, regex)
>>> result
{"https://github.com/a/b/releases/download/1.0.0/b-1.0.0.zip": "1.0.0"}

keepitfresh.get_update_version(file_dict, current_version, vcmp=None)
Look through a dictionary that maps file urls to version strings, much like the one returned by
get_file_urls(), and get the latest version and corresponding file url. If no version newer than cur-
rent_version is found, returns an empty tuple.

current_version should be a string in the same pattern as used in get_file_urls().

To get the latest version, a comparison function is used. The default uses the comparison from the packaging
package. To override this, pass a function in vcmp that accepts two version strings and returns True whenever
the second version string is newer than the first version string.

keepitfresh.dl_unpack(url, outdir, unpack=None)
Downloads the archive in url and unpacks it to outdir.

Unpacking is handled by patool. If you need to override this, you can a function in unpack that accepts the
archive path as the first argument and the output folder as the second argument.

keepitfresh.overwrite_restart(initem, owitem, entry_point)
Overwrites the current application file/folder and restarts the process with the updated application.

Inspired by PyUpdater, uses a separate process for Unix and Windows (Windows does not allow file deletion
while it’s still being used so we have to work around that).

initem can be either a file or a folder and is the path to the updated application. owitem can be either a file or a
folder and is the path to the old application.

entry_point is the relative path from the parent folder of owitem to the executable to restart with.

8 Chapter 3. Reference

https://packaging.pypa.io/en/latest/version/
http://wummel.github.io/patool/

INDEX

D
dl_unpack() (in module keepitfresh), 8

F
freshen_up() (in module keepitfresh), 7

G
get_file_urls() (in module keepitfresh), 7
get_update_version() (in module keepitfresh), 8

I
is_fresh() (in module keepitfresh), 7

O
overwrite_restart() (in module keepitfresh), 8

9

	Installation
	Usage
	Reference
	Index

